Quando um corpo, que descreve trajetória circular, e sofre mudança na sua velocidade angular, então este corpo tem aceleração angular (α).
As formas angulares das equações do Movimento Curvilíneo Uniformemente Variado são obtidas quando divididas pelo raio R da trajetória a que se movimenta o corpo.
Assim:
MUV
|
MCUV
| |
Grandezas lineares
|
Grandezas angulares
| |
E, aceleração resultante é dada pela soma vetorial da aceleração tangencial e da aceleração centípeta:
Exemplo:
Um volante circular como raio 0,4 metros gira, partindo do repouso, com aceleração angular igual a 2rad/s².
(a) Qual será a sua velocidade angular depois de 10 segundos?
(b) Qual será o ângulo descrito neste tempo?
(c) Qual será o vetor aceleração resultante?
(a) Pela função horária da velocidade angular:
(b) Pela função horária do deslocamento angular:
(c) Pelas relações estabelecidas de aceleração tangencial e centrípeta:
Nenhum comentário:
Postar um comentário