Quando o intervalo de tempo for infinitamente pequeno, ou seja, , tem-se a aceleração instantânea do móvel.
Isolando-se o :
Mas, sabemos que:
Então:
Entretanto, se considerarmos , teremos a função horária da velocidade do Movimento Uniformemente Variado, que descreve a velocidade em função do tempo [v=f(t)]:
Posição em função do tempo
A melhor forma de demonstrar esta função é através do diagrama velocidade versus tempo (v x t) no movimento uniformemente variado.
O deslocamento será dado pela área sob a reta da velocidade, ou seja, a área do trapézio.
Onde sabemos que:
logo:
ou
Interpretando esta função, podemos dizer que seu gráfico será uma parábola, pois é resultado de uma função do segundo grau.
Nenhum comentário:
Postar um comentário